Share

Publications

Publications

CMAP Theses  are available by following this link:
Discover CMAP theses

Listed below, are sorted by year, the publications appearing in the HAL open archive.

2019

  • Approximation of functions with small jump sets and existence of strong minimizers of Griffith's energy
    • Chambolle Antonin
    • Conti Sergio
    • Iurlano Flaviana
    Journal de Mathématiques Pures et Appliquées, Elsevier, 2019, 128 (9), pp.119--139. We prove that special functions of bounded deformation with small jump set are close in energy to functions which are smooth in a slightly smaller domain. This permits to generalize the decay estimate by De Giorgi, Carriero, and Leaci to the linearized context in dimension n and to establish the closedness of the jump set for local minimizers of the Griffith energy. (10.1016/j.matpur.2019.02.001)
    DOI : 10.1016/j.matpur.2019.02.001
  • A breakdown of injectivity for weighted ray transforms in multidimensions
    • Goncharov Fedor O
    • Novikov Roman G
    Arkiv för Matematik, Royal Swedish Academy of Sciences, Institut Mittag-Leffler, 2019, 57, pp.333–371. We consider weighted ray-transforms $P_W$ (weighted Radon transforms along straight lines) in $\mathbb{R}^d, \, d\geq 2,$ with strictly positive weights $W$. We construct an example of such a transform with non-trivial kernel in the space of infinitely smooth compactly supported functions on $\mathbb{R}^d$. In addition, the constructed weight $W$ is rotation-invariant continuous and is infinitely smooth almost everywhere on $\mathbb{R}^d \times \mathbb{S}^{d-1}$. In particular, by this construction we give counterexamples to some well-known injectivity results for weighted ray transforms for the case when the regularity of $W$ is slightly relaxed. We also give examples of continous strictly positive $W$ such that $\dim \ker P_W \geq n$ in the space of infinitely smooth compactly supported functions on $\mathbb{R}^d$ for arbitrary $n\in \mathbb{N}\cup \{\infty\}$, where $W$ are infinitely smooth for $d=2$ and infinitely smooth almost everywhere for $d\geq 3$. (10.4310/ARKIV.2019.v57.n2.a5)
    DOI : 10.4310/ARKIV.2019.v57.n2.a5
  • A MICROSCOPIC VIEW ON THE FOURIER LAW
    • Bodineau Thierry
    • Gallagher Isabelle
    • Saint-Raymond Laure
    Comptes Rendus. Physique, Académie des sciences (Paris), 2019. The Fourier law of heat conduction describes heat diffusion in macroscopic systems. This physical law has been experimentally tested for a large class of physical systems. A natural question is to know whether it can be derived from the microscopic models using the fundamental laws of mechanics.
  • ConvSCCS: convolutional self-controlled case-seris model for lagged adverser event detection
    • Morel Maryan
    • Bacry Emmanuel
    • Gaïffas Stéphane
    • Guilloux Agathe
    • Leroy Fanny
    Biostatistics, Oxford University Press (OUP), 2019. With the increased availability of large electronic health records databases comes the chance of enhancing health risks screening. Most post-marketing detection of adverse drug reaction (ADR) relies on physicians' spontaneous reports, leading to under-reporting. To take up this challenge, we develop a scalable model to estimate the effect of multiple longitudinal features (drug exposures) on a rare longitudinal outcome. Our procedure is based on a conditional Poisson regression model also known as self-controlled case series (SCCS). To overcome the need of precise risk periods specification, we model the intensity of outcomes using a convolution between exposures and step functions, which are penalized using a combination of group-Lasso and total-variation. Up to our knowledge, this is the first SCCS model with flexible intensity able to handle multiple longitudinal features in a single model. We show that this approach improves the state-of-the-art in terms of mean absolute error and computation time for the estimation of relative risks on simulated data. We apply this method on an ADR detection problem, using a cohort of diabetic patients extracted from the large French national health insurance database (SNIIRAM), a claims database containing medical reimbursements of more than 53 million people. This work has been done in the context of a research partnership between Ecole Polytechnique and CNAMTS (in charge of SNIIRAM). (10.1093/biostatistics/kxz003)
    DOI : 10.1093/biostatistics/kxz003
  • Option pricing under fast-varying long-memory stochastic volatility
    • Garnier Josselin
    • Solna Knut
    Mathematical Finance, Wiley, 2019, 29 (1), pp.39-83. (10.1111/mafi.12186)
    DOI : 10.1111/mafi.12186
  • Kinetic model of adsorption on crystal surfaces
    • Aoki Kazuo
    • Giovangigli Vincent
    Physical Review E, American Physical Society (APS), 2019, 99. A kinetic theory model describing physisorption and chemisorption of gas particles on a crystal surface is introduced. A single kinetic equation is used to model gas and physisorbed particles interacting with a crystal potential and colliding with phonons. The phonons are assumed to be at equilibrium and the physisorbate-gas equation is coupled to similar kinetic equations describing chemisorbed particles and crystal atoms on the surface. A kinetic entropy is introduced for the coupled system and the H theorem is established. Using the Chapman-Enskog method with a fluid scaling, the asymptotic structure of the adsorbate is investigated and fluid boundary conditions are derived from the kinetic model. (10.1103/PhysRevE.99.052137)
    DOI : 10.1103/PhysRevE.99.052137
  • Scaling limits of population and evolution processes in random environment
    • Bansaye Vincent
    • Caballero Maria-Emilia
    • Méléard Sylvie
    Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2019, 95 (5), pp.749-784. Our motivation comes from the large population approximation of individual based models in population dynamics and population genetics. We propose a general method to investigate scaling limits of finite dimensional population size Markov chains to diffusion with jumps. The statements of tightness, identification and convergence in law are based on the convergence of suitable characteristics of the transition of the chain and strongly exploit the structure of the population processes defined recursively as sums of independent random variables. These results allow to reduce the convergence of characteristics of semimartingales to analytically tractable functional spaces. We develop two main applications. First, we extend the classical Wright-Fisher diffusion approximation to independent and identically distributed random environment. Second, we obtain the convergence in law of generalized Galton-Watson processes with interactions and random environment to the solution of stochastic differential equations with jumps. (10.1214/19-EJP262)
    DOI : 10.1214/19-EJP262
  • New preconditioners for Laplace and Helmholtz integral equations on open curves
    • Averseng Martin
    , 2019. This paper is the second part of a work on Laplace and Helmholtz integral equations in 2 space dimensions on open curves. A new Galerkin method in weighted L 2 spaces together with new preconditioners for the weighted layer potentials are studied. This second part provides the theoretical analysis needed to establish the results announced in the first part. The main novelty is the introduction of a pseudo-differential calculus on open curves that allows to build parametrices for the weighted layer potentials. Contrarily to more classical approaches where the Mellin transform is used, this new approach is well-suited to the specific singularities that appear in the problem.
  • Curvature: a variational approach
    • Agrachev Andrei
    • Barilari Davide
    • Rizzi Luca
    Memoirs of the American Mathematical Society, American Mathematical Society, 2019, 256 (1225). The curvature discussed in this paper is a rather far going generalization of the Riemann sectional curvature. We define it for a wide class of optimal control problems: a unified framework including geometric structures such as Riemannian, sub-Riemannian, Finsler and sub-Finsler structures; a special attention is paid to the sub-Riemannian (or Carnot-Caratheodory) metric spaces. Our construction of the curvature is direct and naive, and it is similar to the original approach of Riemann. Surprisingly, it works in a very general setting and, in particular, for all sub-Riemannian spaces. (10.1090/memo/1225)
    DOI : 10.1090/memo/1225
  • Regularity result for a shape optimization problem under perimeter constraint
    • Bogosel Beniamin
    Communications in Analysis and Geometry, International Press, 2019, 27 (7), pp.1523-1547. We study the problem of optimizing the eigenvalues of the Dirichlet Laplace operator under perimeter constraint. We prove that optimal sets are analytic outside a closed singular set of dimension at most d−8 by writing a general optimality condition in the case the optimal eigenvalue is multiple. As a consequence we find that the optimal k-th eigenvalue is strictly smaller than the optimal (k + 1)-th eigenvalue. We also provide an elliptic regularity result for sets with positive and bounded weak curvature. (10.4310/CAG.2019.v27.n7.a3)
    DOI : 10.4310/CAG.2019.v27.n7.a3
  • Galton–Watson and branching process representations of the normalized Perron–Frobenius eigenvector
    • Cerf Raphaël
    • Dalmau Joseba
    ESAIM: Probability and Statistics, EDP Sciences, 2019, 23, pp.797-802. Let A be a primitive matrix and let λ be its Perron–Frobenius eigenvalue. We give formulas expressing the associated normalized Perron–Frobenius eigenvector as a simple functional of a multitype Galton–Watson process whose mean matrix is A , as well as of a multitype branching process with mean matrix e ( A − I ) t . These formulas are generalizations of the classical formula for the invariant probability measure of a Markov chain. (10.1051/ps/2019007)
    DOI : 10.1051/ps/2019007
  • THE INCOMPATIBILITY OPERATOR: FROM RIEMANN'S INTRINSIC VIEW OF GEOMETRY TO A NEW MODEL OF ELASTO-PLASTICITY
    • Amstutz Samuel
    • van Goethem Nicolas
    , 2019. The mathematical modelling in mechanics has a long-standing history as related to geometry, and significant progresses have often been achieved by the invention of new geometrical tools. Also, it happened that the elucidation of practical issues led to the invention of new scientific concepts, and possibly new paradigms, with potential impact far beyond. One such example is Riemann's intrinsic view in geometry, that offered a radically new insight in the Physics of the early 20-th century. On the other hand, the rather recent intrinsic approaches in elasticity and elasto-plasticity also share this philosophical standpoint of looking from inside, i.e., from the "manifold" point of view. Of course, this approach requires smoothness, and is thus incomplete for an analyst. Nevertheless, its first aim is to highlight the concepts of metric, curvature and torsion; these notions are addressed in the first part of this survey paper. In a second part, they are given a precise functional meaning and their properties are studied systematically. Further, a novel approach to elasto-plasticity constructed upon a model of incompatible elasticity is designed, carrying this intrinsic spirit. The main mathematical object in this theory is the incompatibility operator, i.e., a linearized version of Riemann's curvature tensor. So far, this route not only has led the authors to a new model with a solid functional foundation and proof of existence results, but also to a framework with a minimal amount of ad-hoc assumptions, and complying with both the basic principles of thermodynamics and invariance principles of Physics. The questions arising from this novel approach are complex and intriguing, but we believe that the model is now sufficiently well-posed to be studied simultaneously as a problem of mathematics and of mechanics. Most of the research program remains to be done, and this survey paper is written to present our model, with a particular care to put this approach into a historical perspective.
  • Avis en réponse à la saisine HCB – dossier RX-016. Paris, le 21 février 2019
    • Comité Scientifique Du Haut Conseil Des Biotechnologies .
    • Angevin Frédérique
    • Bagnis Claude
    • Bar-Hen Avner
    • Barny Marie-Anne
    • Boireau Pascal
    • Brévault Thierry
    • Chauvel Bruno B.
    • Collonnier Cécile
    • Couvet Denis
    • Dassa Elie
    • Demeneix Barbara
    • Franche Claudine
    • Guerche Philippe
    • Guillemain Joël
    • Hernandez Raquet Guillermina
    • Khalife Jamal
    • Klonjkowski Bernard
    • Lavielle Marc
    • Le Corre Valérie
    • Lefèvre François
    • Lemaire Olivier
    • Lereclus Didier D.
    • Maximilien Rémy
    • Meurs Eliane
    • Naffakh Nadia
    • Négre Didier
    • Noyer Jean-Louis
    • Ochatt Sergio
    • Pages Jean-Christophe
    • Raynaud Xavier
    • Regnault-Roger Catherine
    • Renard Michel M.
    • Renault Tristan
    • Saindrenan Patrick
    • Simonet Pascal
    • Troadec Marie-Bérengère
    • Vaissière Bernard
    • de Verneuil Hubert
    • Vilotte Jean-Luc
    , 2019, pp.23 p.. Le Haut Conseil des biotechnologies (HCB) a été saisi sur le fondement du règlement (CE) n° 1829/2003 d’une demande d’avis relative au dossier EFSA-GMO-RX-016 dans le but de proposer des commentaires à destination de l’EFSA en contribution à l’évaluation européenne du dossier, et d’éclairer les autorités compétentes françaises dans une étape intermédiaire en amont du vote à la Commission européenne. Déposé par la société Syngenta Crop Protection NV/SA, ce dossier est une demande de renouvellement d’autorisation de mise sur le marché du maïs génétiquement modifié Bt11 à des fins d’importation, transformation, et alimentation humaine et animale dans l’Union européenne.
  • Avis en réponse à la saisine HCB- dossier 2019-159. Paris, le 16 décembre 2019
    • Comité Scientifique Du Haut Conseil Des Biotechnologies .
    • Angevin Frédérique
    • Bagnis Claude
    • Bar-Hen Avner
    • Barny Marie-Anne
    • Boireau Pascal
    • Brévault Thierry
    • Chauvel Bruno B.
    • Collonnier Cécile
    • Couvet Denis
    • Dassa Elie
    • Demeneix Barbara
    • Franche Claudine
    • Guerche Philippe
    • Guillemain Joël
    • Hernandez Raquet Guillermina
    • Khalife Jamal
    • Klonjkowski Bernard
    • Lavielle Marc
    • Le Corre Valérie
    • Lefèvre François
    • Lemaire Olivier
    • Lereclus Didier D.
    • Maximilien Rémy
    • Meurs Eliane
    • Naffakh Nadia
    • Négre Didier
    • Noyer Jean-Louis
    • Ochatt Sergio
    • Pages Jean-Christophe
    • Raynaud Xavier
    • Regnault-Roger Catherine
    • Renard Michel M.
    • Renault Tristan
    • Saindrenan Patrick
    • Simonet Pascal
    • Troadec Marie-Bérengère
    • Vaissière Bernard
    • de Verneuil Hubert
    • Vilotte Jean-Luc
    , 2019, pp.34 p.. Le Haut Conseil des biotechnologies (HCB) a été saisi sur le fondement du règlement (CE) n° 1829/2003 d’une demande d’avis relative au dossier EFSA-GMO-NL-2019-159 dans le but de proposer des commentaires à destination de l’EFSA en contribution à l’évaluation européenne du dossier, et d’éclairer les autorités compétentes françaises dans une étape intermédiaire en amont du vote à la Commission européenne. Déposé par la société Pioneer Hi-Bred International, Inc., ce dossier est une demande d’autorisation de mise sur le marché du maïs génétiquement modifié DP202216 à des fins d’importation, de transformation et d’alimentation humaine et animale dans l’Union européenne.
  • Derivation of a two-phase flow model with two-scale kinematics, geometric variables and surface tension using variational calculus
    • Cordesse Pierre
    • Kokh Samuel
    • Di Battista Ruben
    • Drui Florence
    • Massot Marc
    NASA Technical Memorandum, National Aeronautics and Space Administration, 2019. The present paper proposes a two-phase flow model that is able to account for two-scale kinematics and two-scale surface tension effects based on geometric variables at small scale. At large scale, the flow and the full geometry of the interface may be retrieved thanks to the bulk variables, while at small scale the interface is accurately described by volume fraction, interfacial area density and mean curvature, called the geometric variables. Our work mainly relies on the Least Action Principle. The resulting system is an extension of a previous work modeling small scale pulsation in which surface tension was not taken into account at large or small scale. Whereas the original derivation assumes a cloud of monodispersed spherical bubbles, the present context allows for polydispersed, non-spherical bubbles. The resulting system of equations solely involves small scale geometric variables, thus contributing in the construction of a unified model describing both large and small scales.
  • Topological derivative for the nonlinear magnetostatic problem
    • Amstutz Samuel
    • Gangl Peter
    Electronic Transactions on Numerical Analysis, Kent State University Library, 2019, 51, pp.169-218. (10.1553/etna_vol51s169)
    DOI : 10.1553/etna_vol51s169
  • On a Wasserstein-type distance between solutions to stochastic differential equations
    • Bion-Nadal Jocelyne
    • Talay Denis
    The Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2019, 29 (3), pp.1609-1639. In this paper, we introduce a Wasserstein-type distance on the set of the probability distributions of strong solutions to stochastic differential equations. This new distance is defined by restricting the set of possible coupling measures. We prove that it may also be defined by means of the value function of a stochastic control problem whose Hamilton–Jacobi–Bellman equation has a smooth solution, which allows one to deduce a priori estimates or to obtain numerical evaluations. We exhibit an optimal coupling measure and characterize it as a weak solution to an explicit stochastic differential equation, and we finally describe procedures to approximate this optimal coupling measure. A notable application concerns the following modeling issue: given an exact diffusion model, how to select a simplified diffusion model within a class of admissible models under the constraint that the probability distribution of the exact model is preserved as much as possible? (10.1214/18-AAP1423)
    DOI : 10.1214/18-AAP1423
  • Initiation of a validation strategy of reduced-order two-fluid flow models using direct numerical simulations in the context of jet atomization
    • Cordesse Pierre
    • Murrone A.
    • Ménard T.
    • Massot Marc
    NASA Technical Memorandum, National Aeronautics and Space Administration, 2019, pp.1-11. In industrial applications, developing predictive tools relying on numerical simulations using reduced-order models nourish the need of building a validation strategy. In the context of cryogenic atomization, we propose to build a hierarchy of direct numerical simulation test cases to assess qualitatively and quantitatively diffuse interface models. The present work proposes an initiation of the validation strategy with an air-assisted water atomization using a coaxial injector.
  • Avis en réponse à la saisine HCB - EFSA-GMO-ES-2018-154. Paris, le 5 avril 2019
    • Du Haut Conseil Des Biotechnologies Comité Scientifique
    • Angevin Frédérique
    • Bagnis Claude
    • Bar-Hen Avner
    • Barny Marie-Anne
    • Boireau Pascal
    • Brévault Thierry
    • Chauvel Bruno B.
    • Collonnier Cécile
    • Couvet Denis
    • Dassa Elie
    • de Verneuil Hubert
    • Demeneix Barbara
    • Franche Claudine
    • Guerche Philippe
    • Guillemain Joël
    • Hernandez Raquet Guillermina
    • Khalife Jamal
    • Klonjkowski Bernard
    • Lavielle Marc
    • Le Corre Valérie
    • Lefèvre François
    • Lemaire Olivier
    • Lereclus Didier D.
    • Maximilien Rémy
    • Meurs Eliane
    • Naffakh Nadia
    • Négre Didier
    • Noyer Jean-Louis
    • Ochatt Sergio
    • Pages Jean-Christophe
    • Raynaud Xavier
    • Regnault-Roger Catherine
    • Renard Michel M.
    • Renault Tristan
    • Saindrenan Patrick
    • Simonet Pascal
    • Troadec Marie-Bérengère
    • Vaissière Bernard
    • Vilotte Jean-Luc
    , 2019.
  • Avis en réponse à la saisine HCB - habilitation agents 2019. Paris, le 4 juillet 2019
    • Comité Scientifique Du Haut Conseil Des Biotechnologies .
    • Angevin Frédérique
    • Bagnis Claude
    • Bar-Hen Avner
    • Barny Marie-Anne
    • Boireau Pascal
    • Brévault Thierry
    • Chauvel Bruno B.
    • Collonnier Cécile
    • Couvet Denis
    • Dassa Elie
    • de Verneuil Hubert
    • Demeneix Barbara
    • Franche Claudine
    • Guerche Philippe
    • Guillemain Joël
    • Hernandez Raquet Guillermina
    • Khalife Jamal
    • Klonjkowski Bernard
    • Lavielle Marc
    • Le Corre Valérie
    • Lefèvre François
    • Lemaire Olivier
    • Lereclus Didier D.
    • Maximilien Rémy
    • Meurs Eliane
    • Naffakh Nadia
    • Négre Didier
    • Noyer Jean-Louis
    • Ochatt Sergio
    • Pages Jean-Christophe
    • Raynaud Xavier
    • Regnault-Roger Catherine
    • Renard Michel M.
    • Renault Tristan
    • Saindrenan Patrick
    • Simonet Pascal
    • Troadec Marie-Bérengère
    • Vaissière Bernard
    • Vilotte Jean-Luc
    , 2019, pp.2 p..
  • Avis en réponse à la saisine HCB - dossier EFSA-GMO-RX-013. Paris, le 30 janvier 2019
    • Comité Scientifique Du Haut Conseil Des Biotechnologies .
    • Angevin Frédérique
    • Bagnis Claude
    • Bar-Hen Avner
    • Barny Marie-Anne
    • Boireau Pascal
    • Brévault Thierry
    • Chauvel Bruno B.
    • Collonnier Cécile
    • Couvet Denis
    • Dassa Elie
    • de Verneuil Hubert
    • Demeneix Barbara
    • Franche Claudine
    • Guerche Philippe
    • Guillemain Joël
    • Hernandez Raquet Guillermina
    • Khalife Jamal
    • Klonjkowski Bernard
    • Lavielle Marc
    • Le Corre Valérie
    • Lefèvre François
    • Lemaire Olivier
    • Lereclus Didier D.
    • Maximilien Rémy
    • Meurs Eliane
    • Naffakh Nadia
    • Négre Didier
    • Noyer Jean-Louis
    • Ochatt Sergio
    • Pages Jean-Christophe
    • Raynaud Xavier
    • Regnault-Roger Catherine
    • Renard Michel M.
    • Renault Tristan
    • Saindrenan Patrick
    • Simonet Pascal
    • Troadec Marie-Bérengère
    • Vaissière Bernard
    • Vilotte Jean-Luc
    , 2019.
  • Pointwise Besov Space Smoothing of Images
    • Buzzard Gregery
    • Chambolle Antonin
    • Cohen Jonathan
    • Levine Stacey
    • Lucier Bradley
    Journal of Mathematical Imaging and Vision, Springer Verlag, 2019, 61 (1), pp.1-20. (10.1007/s10851-018-0821-1)
    DOI : 10.1007/s10851-018-0821-1
  • On the stability of matrix-valued Riccati diffusions
    • Bishop Adrian N
    • del Moral Pierre
    Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2019, 24. The stability properties of matrix-valued Riccati diffusions are investigated. The matrix-valued Riccati diffusion processes considered in this work are of interest in their own right, as a rather prototypical model of a matrix-valued quadratic stochastic process. Under rather natural observability and controllability conditions, we derive time-uniform moment and fluctuation estimates and exponential contraction inequalities. Our approach combines spectral theory with nonlinear semigroup methods and stochastic matrix calculus. This analysis seem to be the first of its kind for this class of matrix-valued stochastic differential equation. This class of stochastic models arise in signal processing and data assimilation, and more particularly in ensemble Kalman-Bucy filtering theory. In this context, the Riccati diffusion represents the flow of the sample covariance matrices associated with McKean-Vlasov-type interacting Kalman-Bucy filters. The analysis developed here applies to filtering problems with unstable signals. (10.1214/19-EJP342)
    DOI : 10.1214/19-EJP342
  • Avis en réponse à la saisine HCB sur le dossier EFSA-GMO-ES-2018-154. Paris, le 5 avril 2019
    • Comité Scientifique Du Haut Conseil Des Biotechnologies .
    • Angevin Frédérique
    • Bagnis Claude
    • Bar-Hen Avner
    • Barny Marie-Anne
    • Boireau Pascal
    • Brévault Thierry
    • Chauvel Bruno B.
    • Collonnier Cécile
    • Couvet Denis
    • Dassa Elie
    • de Verneuil Hubert
    • Demeneix Barbara
    • Franche Claudine
    • Guerche Philippe
    • Guillemain Joël
    • Hernandez Raquet Guillermina
    • Khalife Jamal
    • Klonjkowski Bernard
    • Lavielle Marc
    • Le Corre Valérie
    • Lefèvre François
    • Lemaire Olivier
    • Lereclus Didier D.
    • Maximilien Rémy
    • Meurs Eliane
    • Naffakh Nadia
    • Négre Didier
    • Noyer Jean-Louis
    • Ochatt Sergio
    • Pages Jean-Christophe
    • Raynaud Xavier
    • Regnault-Roger Catherine
    • Renard Michel M.
    • Renault Tristan
    • Saindrenan Patrick
    • Simonet Pascal
    • Troadec Marie-Bérengère
    • Vaissière Bernard
    • Vilotte Jean-Luc
    , 2019, pp.14 p..
  • Uniform propagation of chaos and creation of chaos for a class of nonlinear diffusions
    • del Moral Pierre
    • Tugaut Julian
    Stochastic Analysis and Applications, Taylor & Francis: STM, Behavioural Science and Public Health Titles, 2019, 37 (6), pp.909-935. We are interested in nonlinear diffusions in which the own law intervenes in the drift. This kind of diffusions corresponds to the hydrodynamical limit of some particle system. One also talks about propagation of chaos. It is well known, for McKean-Vlasov diffusions, that such a propagation of chaos holds on finite-time interval. We here aim to establish a uniform propagation of chaos even if the external force is not convex, with a diffusion coefficient sufficiently large. The idea consists in combining the propagation of chaos on a finite-time interval with a functional inequality, already used by Bolley, Gentil and Guillin. Here, we also deal with a case in which the system at time t = 0 is not chaotic and we show under easily checked assumptions that the system becomes chaotic as the number of particles goes to infinity together with the time. This yields the first result of this type for mean field particle diffusion models as far as we know. (10.1080/07362994.2019.1622426)
    DOI : 10.1080/07362994.2019.1622426