Publications
CMAP Theses are available by following this link:
Discover CMAP theses
Listed below, are sorted by year, the publications appearing in the HAL open archive.
2010
-
Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation
- Baudouin Lucie
- Cerpa Eduardo
- Crépeau Emmanuelle
- Mercado Alberto
-
FBSDE with time delayed generators: Lp-solutions, differentiability, representation formulas and path regularity
- dos Reis Gonçalo
- Réveillac Anthony
- Zhang Jianing
-
The nature of price returns during periods of high market activity
- Al Dayri Khalil
- Bacry Emmanuel
- Muzy J.-F.
DOI : 10.1007/978-88-470-1766-6 -
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-quaternions (un 'Mandelbulb')
- Colonna Jean-François
-
Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-quaternions (un 'Mandelbulb') -ou 'Vingt-mille lieues sous les mers
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-quaternions (un 'Mandelbulb')
- Colonna Jean-François
-
Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-quaternions (un 'Mandelbulb') -ou 'Vingt-mille lieues sous les mers
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-quaternions (un 'Mandelbulb')
- Colonna Jean-François
-
Vue artistique d'un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François
-
Un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb' : un 'JuliaBulb') calculé pour A=(-0.5815147625160462,+0.6358885017421603,0,0)
- Colonna Jean-François